翻訳と辞書
Words near each other
・ Matrix population models
・ Matrix Powertag
・ Matrix product state
・ Matrix Quest
・ Matrix regularization
・ Matrix representation
・ Matrix representation of conic sections
・ Matrix representation of Maxwell's equations
・ Matrix Requirements Medical
・ Matrix ring
・ Matrix scheme
・ Matrix similarity
・ Matrix Software
・ Matrix splitting
・ Matrix string theory
Matrix t-distribution
・ Matrix Template Library
・ Matrix theory (physics)
・ Matrix Toolkit Java
・ Matrix unit
・ Matrix vote
・ Matrix-assisted laser desorption electrospray ionization
・ Matrix-assisted laser desorption/ionization
・ Matrix-core
・ Matrix-exponential distribution
・ Matrix-free methods
・ Matrix-supported rock
・ MatrixDB
・ Matrixism
・ MatrixSSL


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Matrix t-distribution : ウィキペディア英語版
Matrix t-distribution
In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.〔Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). ("Predictive Matrix-Variate ''t'' Models." ) In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, ''NIPS '07: Advances in Neural Information Processing Systems'' 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.〕 The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution. For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.
In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.
==Definition==
|\boldsymbol\Sigma|^}
:\times \left|\mathbf_n + \boldsymbol\Sigma^(\mathbf - \mathbf)\boldsymbol\Omega^(\mathbf-\mathbf)^\right|^}

|
cdf =No analytic expression|
mean =\mathbf if \nu + p - n > 1, else undefined|
mode =\mathbf|
variance =\frac if \nu > 2, else undefined|
kurtosis =|
entropy =|
mgf =|
char =see below|
}}
For a matrix t-distribution, the probability density function at the point \mathbf of an n\times p space is
: f(\mathbf ; \nu,\mathbf,\boldsymbol\Sigma, \boldsymbol\Omega) = K
\times \left|\mathbf_n + \boldsymbol\Sigma^(\mathbf - \mathbf)\boldsymbol\Omega^(\mathbf-\mathbf)^\right|^},

where the constant of integration ''K'' is given by
: K =
\frac\right)} \Gamma_p\left(\frac\right)} |\boldsymbol\Omega|^} |\boldsymbol\Sigma|^}.
Here \Gamma_p is the multivariate gamma function.
The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Matrix t-distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.